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ABSTRACT

Motion is perhaps the most consequential phenomenon in physics. A flawed or incomplete 
understanding of its nature must therefore lead to intractable problems in physics. This paper 
sets out to illuminate the nature of motion: I postulate that matter propagates by discrete motion 
based on a binary set of velocities S = {c, 0}, where c is the velocity of light. Matter, 
consequently, must be capable of existence in two states: a state capable of attaining velocity 
c and a state capable of nil velocity. This capability is therefore a necessary condition for 
motion and the basis of wave-particle duality. The smallest interval for discrete motion is equal 
to the de Broglie wavelength: the velocity of a particle over this interval is zero at the edges of 
the interval and c within the interval, both velocities being attained in a quantum leap. I propose 
equations for time spent in motion and time spent at rest in this interval by a moving body. The 
latter length of time accounts for all subluminal velocities and was first formally noted in 
Zeno’s paradox of the arrow. In the discussion section, we explore the implications of this 
model of motion for the velocity addition formula, the accuracy of calculus, Newton’s First 
Law of Motion, and the reputed inherent uncertainty in measurement. Lastly, I present a 
conclusion and a recommendation for further inquiry.
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1. Introduction
A particle moving between two points A and B does not cover the distance in one smooth 
movement but in a series of alternate bursts and freezes of motion. In the burst-of-motion phase 
the particle travels at the velocity of light while in the freeze-of-motion phase it is stationary. 
So the velocity of light is not only the maximum possible velocity in the universe as deduced 
in The Special Theory of Relativity, but also the least possible non-zero velocity that a particle 
can assume. The vast spectrum of subluminal velocities that we observe in nature arise from 
the interplay between the respective durations of the burst-of-motion phase and the freeze-of-
motion phase. Since matter cannot propagate at the speed of light, discrete motion initially 
requires matter to assume a state that can propagate at c. I shall call it the x-state because I am 
not certain about its nature. Suppose that the interval AB is the smallest moveable distance in 
the particle state. At point A, the particle is converted into the x-state; from A to B it moves in 
the x-state at velocity c; and at point B it changes from the x-state back into a particle. The time 
taken for the state transition from ordinary matter to x-state and back to ordinary matter is what 
accounts for all subluminal velocities. For ease of reference, we shall call the transition from 
ordinary matter to the x-state sublimation and from the x-state back to ordinary matter 
condensation.

2. Methods and Postulates
This paper is based on the hypothesis of discrete motion at quantized velocities followed by the 
mathematical and logical exploration of the consequences of this model of motion. Specifically, I 
propose a model of motion based on the following postulates:

i. Postulate 1 
All moving bodies assume discrete motion.

ii. Postulate 2
The universal set of fundamental velocities for discrete motion is the binary set S = {c, 0}, 
where c is the velocity of light.

3. Results: Mathematical descriptions of discrete motion
a. Least moveable distance
Suppose that a particle of mass m moves from point A to point B at velocity v and that the length 
AB is the smallest moveable distance. Since the particle exists in the ordinary state of matter only 
at points A and B, the time taken to move the distance AB is the period of the particle. It follows 

that the smallest moveable distance in particle state is equal to (
ℎ

𝑚𝑣), the de Broglie wavelength of 
the particle.
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i.e. least moveable distance in particle state ∆𝑥 = ( ℎ
𝑚𝑣) …………… (i)

Therefore, matter in motion assumes the particle state at integral multiples of the de Broglie 
wavelength.

b. Duration of burst and freeze phases of motion
Suppose tt= overall time a particle of mass m takes to move from A to B at average velocity v

tc= time spent to move from A to B at the speed of light in x-state of matter

ts= time taken by particle of matter to sublimate at point A and to condense at point B

Then tt= ts + tc

Therefore, ts=  ℎ
𝑚𝑣(1

𝑣 ― 1
𝑐)

Or 𝑡𝑠 =
ℎ

𝑚𝑣2(1 ―
𝑣
𝑐) ………………………………..(ii)

This is the duration of the freeze phase of motion (the ephemeral pause) – the length of time that 
Zeno of Elea noted in his paradox of the arrow [1].

The duration of the burst phase or the ephemeral flight tc = 
ℎ

𝑚𝑣𝑐 ………………………..(iii)

c. Probability of burst and freeze phases during motion
The probability that the particle is in motion (i.e. in burst phase) = 

𝑡𝑐

𝑡𝑐 + 𝑡𝑠
 = 

𝑣
𝑐 ……………...(iv)

The probability that the particle is stationary (i.e. in freeze phase) = 
𝑡𝑠

𝑡𝑐 +  𝑡𝑠
 = (1 - 

𝑣
𝑐) ………(v)

d. Relative velocity
Suppose that two particles A and B are in motion along parallel trajectories at velocities 𝑣𝐴 and 𝑣𝐵 
respectively. What would be the velocity of B relative to A (designated 𝑣𝐵𝐴) during a time interval 
∆𝑡?

According to our model of motion, B moves relative to A in three circumstances:

 when A is stationary and B is in motion
The duration of this phase = ∆𝑡(𝑣𝐵

𝑐
)(1 ―  𝑣𝐴

𝑐
 ) .

The factor (𝑣𝐵

𝑐
)(1 ―  𝑣𝐴

𝑐
 ) is the probability that B is in motion at velocity c and A is 

stationary (see equations (iv) & (v)).
 when A is in motion and B is stationary

The duration of this phase = ∆𝑡(𝑣𝐴

𝑐
)(1 ―  𝑣𝐵

𝑐
 ).

The factor (𝑣𝐴

𝑐
)(1 ―  𝑣𝐵

𝑐
 ) is the probability that A is in motion at velocity c and B is 

stationary. (see equations (iv)& (v)).
 when both A and B are in motion

The duration of this phase = ∆𝑡(
𝑣𝐴𝑣𝐵

𝑐2 ). 

The factor (
𝑣𝐴𝑣𝐵

𝑐2 ) is the probability that both A and B are in motion and are moving 
independently of each other at relative velocity 𝑣𝐵𝐴.
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Therefore, the total distance moved by B relative to A,

 𝑣𝐵𝐴∆𝑡 =  c∆𝑡(𝑣𝐵

𝑐
)(1 ―  𝑣𝐴

𝑐
 ) ±  c∆𝑡(𝑣𝐴

𝑐
)(1 ―  𝑣𝐵

𝑐
 ) +  𝑣𝐵𝐴∆𝑡(

𝑣𝐴𝑣𝐵

𝑐2 )

Note that 𝑣𝐵𝐴 must maintain the same sign on both sides of the equation. Depending on which sign we 
choose for the second term of the equation above, we get one of two equations:

i.e.   𝑣𝐵𝐴 = 𝑣𝐵 + 𝑣𝐴 ―  2𝑣𝐴𝑣𝐵

𝑐
+ 𝑣𝐵𝐴(

𝑣𝐴𝑣𝐵

𝑐2 )

or 𝑣𝐵𝐴 = 𝑣𝐵 ― 𝑣𝐴 + 𝑣𝐵𝐴(
𝑣𝐴𝑣𝐵

𝑐2 )

So 𝑣𝐵𝐴 =
𝑣𝐵 + 𝑣𝐴 ―

 2𝑣𝐴𝑣𝐵
𝑐

1 ―  
𝑣𝐴𝑣𝐵

𝑐2
……………….(vi)

Or 𝑣𝐵𝐴 =
𝑣𝐵 ― 𝑣𝐴 

1 ―  
𝑣𝐴𝑣𝐵

𝑐2
……………..(vii)

Equation (vii) is similar to the Einstein velocity addition formula [2, p. 1230] but equation (vi) is 
different though it gives the same result for the velocity of light relative to an observer. Equation (vi) 
in effect suggests that a correction to the Einstein velocity addition formula is necessary. 

4. Discussion
a. Implication of discrete quantized velocities for calculus

The calculation of a particle’s velocity at a point is based on the concept of the infinitesimal interval 
(whose length in this paper is given by equation (i)). The idea is that the average velocity over such an 
interval approximates to the velocity at a point. The model of motion that I have described here 
stipulates that the velocity of a particle within the infinitesimal interval is c but is nil at the boundaries 
of the interval and that both velocities are attained not gradually but in a quantum leap. Clearly, the 
average subluminal velocity v does not approximate to either of the two velocities attained in the 
infinitesimal interval as assumed.

b. Implication of discrete motion and Newton’s First Law of Motion 
Newton’s First Law of Motion states, “every body continues in its state of rest or of uniform motion in 
a straight line unless compelled by an external force to act otherwise”. Given this law and the factuality 
of the freeze phase of motion, would we be right to say that a force effects the transition of a moving 
body from nil velocity in the freeze phase to luminal velocity in the burst phase of motion? 

According to our model of discrete motion, the said changes in velocity do not happen gradually but in 
a single quantum leap and are effected at a point. If a force was required to cause this velocity change, 
that force would have to be infinite in magnitude – a manifest absurdity. Consequently, we must 
conclude that the quantum leap in velocity from nil velocity in the freeze phase to luminal velocity in 
the burst phase of motion is not caused by a force but by the fact of a particle’s change in physical state 
from ordinary matter to the x-state. Likewise, we must further conclude that the reverse drop in velocity 
from luminal velocity in the burst phase to nil velocity in the freeze phase of motion is also not caused 
by a force but by the fact of a particle’s change in physical state from the x-state to ordinary matter. 

Proceeding in the direction pointed by these conclusions, we are led to surmise that just as energy in its 
physical state cannot come to a state of rest, matter in its ordinary state cannot leave a state of rest — 
the fabric of space is such that it only admits of the motion of energy or a similar state of matter. 
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Therefore, the motion of matter would be impossible in a universe where state fluctuations were not 
possible. In other words, the capability of matter for wave-particle duality is what makes its motion 
possible. If this be the case, then the role of force in the motion of matter is merely to initiate state 
fluctuations, which fluctuations then sustain motion.

Wave-particle duality therefore functions like the steering, the braking, and the acceleration system of 
a moving particle. Transition to the x-state sets the particle in motion while transition to the particle 
state stops it. Sequential transition to the x-state from the left turns a particle to the right and, conversely, 
sequential transition to the x-state from the right turns a particle to the left – quite like a boat being 
rowed from the right or the left side. Consequently, by sequential wave-particle transitions alone a 
particle can in principle execute curvilinear motion.

c. Implication of discrete motion on uncertainty of measurement
This model of discrete motion suggests that there should be no measurement uncertainty concerning 
motion in physics. Firstly, all motion of matter is based on a binary set of velocities S = {c, 0}, where 
c is the velocity of light and discrete motion occurs over the interval ∆𝑥 = ( ℎ

𝑚𝑣
)(𝑠𝑒𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝑖)

). Where would uncertainty in position or momentum arise? Secondly, during motion matter 
alternates between its wave and particle states – where then would uncertainty in the wave or 
particle nature of matter arise? Obviously, an observer to whom the motion, the particle state, 
and the wave state of matter appear continuous rather than discrete and to whom its velocity 
never assumes the values c and zero suffers a gap in observation that must ultimately manifest 
as a gap between reality and certain predictions of the models that they formulate to describe 
it. This is exemplified in this paper by the historical failure of physicists to derive equations 
(vi) and (vii) in classical Newtonian mechanics yet we did so here elegantly without recourse 
to Lorentz transformations.

d. Implication of discrete motion for Bohr’s complementarity principle
According to Bohr’s complementarity principle, the wave and particle natures of an object cannot be 
observed simultaneously [3, p. 156]. Our mathematical description of discrete motion is consistent 
with this principle: specifically, for a particle in motion over a distance given by equation (i), the 
particle nature exists for a time duration given by equation (ii), and the wave nature exists for a time 
duration given by equation (iii). The complementarity principle arises naturally from this model of 
discrete motion given its stipulation that matter in motion assumes wave and particle states 
alternately, not concurrently.

e. Implication of discrete motion for the nature of acceleration
Since the universal set of fundamental velocities S = {c, 0} has only two constant velocities, a 
moving body achieves acceleration by varying the duration of the ephemeral flight and that of the 
ephemeral pause, given respectively by equations (ii) and (iii).

5. Conclusion
This paper has proposed a model of discrete motion at quantized velocities for all particles of matter. 
The model is based on a binary set of velocities S = {c, 0}, where c is the velocity of light. Specifically, 
it proposes that given an infinitesimal interval equal to the de Broglie wavelength, a particle of 
matter in motion attains velocity c within the interval and nil velocity at the edges of the interval, both 
velocities being attained in a quantum leap. To propagate at velocity c, a particle of matter must first 
transition to a hypothesized x-state; conversely, to stand still during motion, matter must revert to its 
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ordinary state from its hypothesized x-state. Therefore, the capacity of matter for duality of state is a 
necessary condition for its motion. The time taken to accomplish state transitions accounts for all non-
zero subluminal velocities since these transitions occur during the ephemeral pause of a moving body. 
Basing on this model of motion, we were able to propose an equation for the duration of state transitions 
in an interval equal to the de Broglie wavelength and to derive the Einstein equation for relative velocity.

As a recommendation for research, I suggest further inquiry into the nature of the hypothesized x-state 
of matter to determine whether it is simply a form of energy or a new state of matter. 
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